The GFP Site
cool uses
pixie

Glowing Salamanders: The road to limb regeneration?

Graduate student Lidia Sobkow in the laboratory of Dr. Elly Tanaka at the Max PIank Institute in Dresden has created a transgenic GFP axolotl, a half-foot long salamander that dwells in the Aztec canals of Mexico City. Although axolots are endangered, they hold significant promise for human amputees. The salamander has the ability to regrow injured or missing parts of its body such as limbs, jaws, skin, organs, and parts of its brain and spinal cord through an embryo-like growth process. Scientists conclude that once they understand how a salamander can regrow a full limb as opposed to just a stump, they can introduce this biological technique to human amputees.

In order to monitor the axolotl's limb regeneration process, the Max Planck scientists have inserted a green fluorescent protein into a mutant axolotl that lacks skin pigment. Since the salamander has clear skin, it is very easy to identify how the group of cells at the wound, the blastema, can multiply and form a new limb. Experts predict that humans with missing or damaged limbs will be able to regrow them within ten to twenty years.

(Chelsea Johnson)

 


Newest
Home
Cool Uses
New Techniques
History
Nobel Prize
Timeline
Structure
Natural Function
Highlighter Proteins
Our Research
Glowing Genes
Infrared Fluorescent Proteins
Glowing Marine Worms
Podcasts
Related Sites